A Generalization of Kronecker Function Rings and Nagata Rings

نویسندگان

  • MARCO FONTANA
  • ALAN LOPER
چکیده

Let D be an integral domain with quotient field K. The Nagata ring D(X) and the Kronecker function ring Kr(D) are both subrings of the field of rational functions K(X) containing as a subring the ring D[X] of polynomials in the variable X. Both of these function rings have been extensively studied and generalized. The principal interest in these two extensions ofD lies in the reflection of various algebraic and spectral properties of D and Spec(D) in algebraic and spectral properties of the function rings. Despite the obvious similarities in definitions and properties, these two kinds of domains of rational functions have been classically treated independently, when D is not a Prüfer domain. The purpose of this note is to study two different unified approaches to the Nagata rings and the Kronecker function rings, which yield these rings and their classical generalizations as special cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graded Integral Domains and Nagata Rings , Ii

Let D be an integral domain with quotient field K, X be an indeterminate over D, K[X] be the polynomial ring over K, and R = {f ∈ K[X] | f(0) ∈ D}; so R is a subring of K[X] containing D[X]. For f = a0 + a1X + · · ·+ anX ∈ R, let C(f) be the ideal of R generated by a0, a1X, . . . , anX n and N(H) = {g ∈ R | C(g)v = R}. In this paper, we study two rings RN(H) and Kr(R, v) = { fg | f, g ∈ R, g 6=...

متن کامل

Nagata Rings, Kronecker Function Rings and Related Semistar Operations

In 1994, Matsuda and Okabe introduced the notion of semistar operation. This concept extends the classical concept of star operation (cf. for instance, Gilmer’s book [20]) and, hence, the related classical theory of ideal systems based on the works by W. Krull, E. Noether, H. Prüfer and P. Lorenzen from 1930’s. In [17] and [18] the current authors investigated properties of the Kronecker functi...

متن کامل

Triangularization over finite-dimensional division rings using the reduced trace

In this paper we study triangularization of collections of matrices whose entries come from a finite-dimensional division ring. First, we give a generalization of Guralnick's theorem to the case of finite-dimensional division rings and then we show that in this case the reduced trace function is a suitable alternative for trace function by presenting two triangularization results. The first one...

متن کامل

A class of Artinian local rings of homogeneous type

‎Let $I$ be an ideal in a regular local ring $(R,n)$‎, ‎we will find‎ ‎bounds on the first and the last Betti numbers of‎ ‎$(A,m)=(R/I,n/I)$‎. ‎if $A$ is an Artinian ring of the embedding‎ ‎codimension $h$‎, ‎$I$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $A$ a {it $t-$extended stretched local ring}‎. ‎This class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006